Approximating Threshold Circuits by Rational Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Threshold Functions and Boolean Threshold Circuits

We study the complexity of computing Boolean functions on general Boolean domains by polynomial threshold functions (PTFs). A typical example of a general Boolean domain is {1, 2}. We are mainly interested in the length (the number of monomials) of PTFs, with their degree and weight being of secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two thre...

متن کامل

Approximating poles of complex rational functions

In this paper we investigate the application of the Nelder– Mead simplex method to approximate poles of complex rational functions. To our knowledge, there isn’t any algorithm which is able to find the poles of a function when only the values on the unit circle are given. We will show that this method can accurately approximate 1, 2 or even 3 poles without any preliminary knowledge of their loc...

متن کامل

Approximating Rational Numbers by Fractions

In this paper we show a polynomial-time algorithm to find the best rational approximation of a given rational number within a given interval. As a special case, we show how to find the best rational number that after evaluating and rounding exactly matches the input number. In both results, “best” means “having the smallest possible denominator”.

متن کامل

Monotone circuits for monotone weighted threshold functions

Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently non-monotone since addition is a non-monotone function. In this work w...

متن کامل

Energy-Efficient Threshold Circuits Computing Mod Functions

We prove that the modulus function MODm of n variables can be computed by a threshold circuit C of energy e and size s = O(e(n/m)1/(e−1)) for any integer e ≥ 2, where the energy e is defined to be the maximum number of gates outputting “1” over all inputs to C, and the size s to be the number of gates in C. Our upper bound on the size s almost matches the known lower bound s = Ω(e(n/m)1/e). We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 1994

ISSN: 0890-5401

DOI: 10.1006/inco.1994.1059